Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
1.
Lancet Neurol ; 23(5): 487-499, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38631765

RESUMO

BACKGROUND: Pick's disease is a rare and predominantly sporadic form of frontotemporal dementia that is classified as a primary tauopathy. Pick's disease is pathologically defined by the presence in the frontal and temporal lobes of Pick bodies, composed of hyperphosphorylated, three-repeat tau protein, encoded by the MAPT gene. MAPT has two distinct haplotypes, H1 and H2; the MAPT H1 haplotype is the major genetic risk factor for four-repeat tauopathies (eg, progressive supranuclear palsy and corticobasal degeneration), and the MAPT H2 haplotype is protective for these disorders. The primary aim of this study was to evaluate the association of MAPT H2 with Pick's disease risk, age at onset, and disease duration. METHODS: In this genetic association study, we used data from the Pick's disease International Consortium, which we established to enable collection of data from individuals with pathologically confirmed Pick's disease worldwide. For this analysis, we collected brain samples from individuals with pathologically confirmed Pick's disease from 35 sites (brainbanks and hospitals) in North America, Europe, and Australia between Jan 1, 2020, and Jan 31, 2023. Neurologically healthy controls were recruited from the Mayo Clinic (FL, USA, or MN, USA between March 1, 1998, and Sept 1, 2019). For the primary analysis, individuals were directly genotyped for the MAPT H1-H2 haplotype-defining variant rs8070723. In a secondary analysis, we genotyped and constructed the six-variant-defined (rs1467967-rs242557-rs3785883-rs2471738-rs8070723-rs7521) MAPT H1 subhaplotypes. Associations of MAPT variants and MAPT haplotypes with Pick's disease risk, age at onset, and disease duration were examined using logistic and linear regression models; odds ratios (ORs) and ß coefficients were estimated and correspond to each additional minor allele or each additional copy of the given haplotype. FINDINGS: We obtained brain samples from 338 people with pathologically confirmed Pick's disease (205 [61%] male and 133 [39%] female; 338 [100%] White) and 1312 neurologically healthy controls (611 [47%] male and 701 [53%] female; 1312 [100%] White). The MAPT H2 haplotype was associated with increased risk of Pick's disease compared with the H1 haplotype (OR 1·35 [95% CI 1·12 to 1·64], p=0·0021). MAPT H2 was not associated with age at onset (ß -0·54 [95% CI -1·94 to 0·87], p=0·45) or disease duration (ß 0·05 [-0·06 to 0·16], p=0·35). Although not significant after correcting for multiple testing, associations were observed at p less than 0·05: with risk of Pick's disease for the H1f subhaplotype (OR 0·11 [0·01 to 0·99], p=0·049); with age at onset for H1b (ß 2·66 [0·63 to 4·70], p=0·011), H1i (ß -3·66 [-6·83 to -0·48], p=0·025), and H1u (ß -5·25 [-10·42 to -0·07], p=0·048); and with disease duration for H1x (ß -0·57 [-1·07 to -0·07], p=0·026). INTERPRETATION: The Pick's disease International Consortium provides an opportunity to do large studies to enhance our understanding of the pathobiology of Pick's disease. This study shows that, in contrast to the decreased risk of four-repeat tauopathies, the MAPT H2 haplotype is associated with an increased risk of Pick's disease in people of European ancestry. This finding could inform development of isoform-related therapeutics for tauopathies. FUNDING: Wellcome Trust, Rotha Abraham Trust, Brain Research UK, the Dolby Fund, Dementia Research Institute (Medical Research Council), US National Institutes of Health, and the Mayo Clinic Foundation.


Assuntos
Doença de Pick , Tauopatias , Masculino , Humanos , Feminino , Proteínas tau/metabolismo , Doença de Pick/genética , Haplótipos , Estudos de Associação Genética
2.
Sci Rep ; 14(1): 8258, 2024 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-38589409

RESUMO

Major depressive disorder (MDD) is a complex and potentially debilitating illness whose etiology and pathology remains unclear. Non-coding RNAs have been implicated in MDD, where they display differential expression in the brain and the periphery. In this study, we quantified small nucleolar RNA (snoRNA) expression by small RNA sequencing in the lateral habenula (LHb) of individuals with MDD (n = 15) and psychiatrically-healthy controls (n = 15). We uncovered five snoRNAs that exhibited differential expression between MDD and controls (FDR < 0.01). Specifically, SNORA69 showed increased expression in MDD and was technically validated via RT-qPCR. We further investigated the expression of Snora69 in the LHb and peripheral blood of an unpredicted chronic mild stress (UCMS) mouse model of depression. Snora69 was specifically up-regulated in mice that underwent the UCMS paradigm. SNORA69 is known to guide pseudouridylation onto 5.8S and 18S rRNAs. We quantified the relative abundance of pseudouridines on 5.8S and 18S rRNA in human post-mortem LHb samples and found increased abundance of pseudouridines in the MDD group. Overall, our findings indicate the importance of brain snoRNAs in the pathology of MDD. Future studies characterizing SNORA69's role in MDD pathology is warranted.


Assuntos
Transtorno Depressivo Maior , Habenula , Humanos , Animais , Camundongos , Transtorno Depressivo Maior/genética , Habenula/metabolismo , Sequência de Bases , RNA Ribossômico 18S , RNA Nucleolar Pequeno/genética , RNA Nucleolar Pequeno/metabolismo
3.
Int J Neuropsychopharmacol ; 27(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38457375

RESUMO

BACKGROUND: Major depressive disorder (MDD) is a leading cause of disability with significant mortality risk. Despite progress in our understanding of the etiology of MDD, the underlying molecular changes in the brain remain poorly understood. Extracellular vesicles (EVs) are lipid-bound particles that can reflect the molecular signatures of the tissue of origin. We aimed to optimize a streamlined EV isolation protocol from postmortem brain tissue and determine whether EV RNA cargo, particularly microRNAs (miRNAs), have an MDD-specific profile. METHODS: EVs were isolated from postmortem human brain tissue. Quality was assessed using western blots, transmission electron microscopy, and microfluidic resistive pulse sensing. EV RNA was extracted and sequenced on Illumina platforms. Functional follow-up was performed in silico. RESULTS: Quality assessment showed an enrichment of EV markers, as well as a size distribution of 30 to 200 nm in diameter, and no contamination with cellular debris. Small RNA profiling indicated the presence of several RNA biotypes, with miRNAs and transfer RNAs being the most prominent. Exploring miRNA levels between groups revealed decreased expression of miR-92a-3p and miR-129-5p, which was validated by qPCR and was specific to EVs and not seen in bulk tissue. Finally, in silico functional analyses indicate potential roles for these 2 miRNAs in neurotransmission and synaptic plasticity. CONCLUSION: We provide a streamlined isolation protocol that yields EVs of high quality that are suitable for molecular follow-up. Our findings warrant future investigations into brain EV miRNA dysregulation in MDD.


Assuntos
Transtorno Depressivo Maior , Vesículas Extracelulares , MicroRNAs , Humanos , Transtorno Depressivo Maior/metabolismo , Depressão , MicroRNAs/genética , Vesículas Extracelulares/genética , Encéfalo/metabolismo
4.
Eur Neuropsychopharmacol ; 78: 54-63, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37931511

RESUMO

Major depressive disorder (MDD) is a serious disease and a burden to patients, families and society. Rodent experiments and human studies suggest that several neuropeptide systems are involved in mood regulation. The aim of this study is two-fold: (i) to monitor, with qPCR, transcript levels of the substance P/tachykinin (TAC), NPY and CCK systems in bulk samples from control and suicide subjects, targeting five postmortem brain regions including locus coeruleus (LC); and (ii) to analyse expression of neuropeptide family transcripts in LC neurons of 'normal' postmortem brains by using laser capture microdissection with Smart-Seq2 RNA sequencing. qPCR revealed distinct regional expression patterns in male and female controls with higher levels for the TAC system in the dorsal raphe nucleus and LC, versus higher transcripts levels of the NPY and CCK systems in prefrontal cortex. In suicide patients, TAC, TAC receptors and a few NPY family transcript levels were increased mainly in prefrontal cortex and LC. The second study on 'normal' noradrenergic LC neurons revealed expression of transcripts for GAL, NPY, TAC1, CCK, and TACR1 and many other peptides (e.g. Cerebellin4 and CARTPT) and receptors (e.g. Adcyap1R1 and GPR173). These data and our previous results on suicide brains indicates that the tachykinin and galanin systems may be valid targets for developing antidepressant medicines. Moreover, the perturbation of neuropeptide systems in MDD patients, and the detection of further neuropeptide and receptor transcripts in LC, shed new light on signalling in noradrenergic LC neurons and on mechanisms possibly associated with mood disorders.


Assuntos
Transtorno Depressivo Maior , Neuropeptídeos , Feminino , Humanos , Masculino , Transtorno Depressivo Maior/genética , Transtorno Depressivo Maior/metabolismo , Núcleo Dorsal da Rafe , Perfilação da Expressão Gênica , Locus Cerúleo/metabolismo , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Substância P/metabolismo , Colecistocinina/metabolismo
5.
Redox Biol ; 69: 103005, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38150991

RESUMO

Major depressive disorder (MDD) is a devastating condition. Although progress has been made in the past seven decades, patients with MDD continue to receive an inadequate treatment, primarily due to the late onset of first-line antidepressant drugs and to their acute withdrawal symptoms. Resilience is the ability to rebound from adversity in a healthy manner and many people have psychological resilience. Revealing the mechanisms and identifying methods promoting resilience will hopefully lead to more effective prevention strategies and treatments for depression. In this study, we found that intermittent hypobaric hypoxia training (IHHT), a method for training pilots and mountaineers, enhanced psychological resilience in adult mice. IHHT produced a sustained antidepressant-like effect in mouse models of depression by inducing long-term (up to 3 months after this treatment) overexpression of hypoxia-inducible factor (HIF)-1α in the dorsal raphe nucleus (DRN) of adult mice. Moreover, DRN-infusion of cobalt chloride, which mimics hypoxia increasing HIF-1α expression, triggered a rapid and long-lasting antidepressant-like effect. Down-regulation of HIF-1α in the DRN serotonergic (DRN5-HT) neurons attenuated the effects of IHHT. HIF-1α translationally regulated the expression of P2X2, and conditionally knocking out P2rx2 (encodes P2X2 receptors) in DRN5-HT neurons, in turn, attenuated the sustained antidepressant-like effect of IHHT, but not its acute effect. In line with these results, a single sub-anesthetic dose of ketamine enhanced HIF-1α-P2X2 signaling, which is essential for its rapid and long-lasting antidepressant-like effect. Notably, we found that P2X2 protein levels were significantly lower in the DRN of patients with MDD than that of control subjects. Together, these findings elucidate the molecular mechanism underlying IHHT promoting psychological resilience and highlight enhancing HIF-1α-P2X2 signaling in DRN5-HT neurons as a potential avenue for screening novel therapeutic treatments for MDD.


Assuntos
Transtorno Depressivo Maior , Resiliência Psicológica , Humanos , Camundongos , Animais , Núcleo Dorsal da Rafe/metabolismo , Neurônios Serotoninérgicos/metabolismo , Serotonina/metabolismo , Serotonina/farmacologia , Antidepressivos/farmacologia , Hipóxia , Receptores Purinérgicos P2X2/metabolismo
6.
Brain Behav Immun Health ; 34: 100684, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37822873

RESUMO

The neurovascular unit, comprised of vascular cell types that collectively regulate cerebral blood flow to meet the needs of coupled neurons, is paramount for the proper function of the central nervous system. The neurovascular unit gatekeeps blood-brain barrier properties, which experiences impairment in several central nervous system diseases associated with neuroinflammation and contributes to pathogenesis. To better understand function and dysfunction at the neurovascular unit and how it may confer inflammatory processes within the brain, isolation and characterization of the neurovascular unit is needed. Here, we describe a singular, standardized protocol to enrich and isolate microvessels from archived snap-frozen human and frozen mouse cerebral cortex using mechanical homogenization and centrifugation-separation that preserves the structural integrity and multicellular composition of microvessel fragments. For the first time, microvessels are isolated from postmortem ventromedial prefrontal cortex tissue and are comprehensively investigated as a structural unit using both RNA sequencing and Liquid Chromatography with tandem mass spectrometry (LC-MS/MS). Both the transcriptome and proteome are obtained and compared, demonstrating that the isolated brain microvessel is a robust model for the NVU and can be used to generate highly informative datasets in both physiological and disease contexts.

7.
Elife ; 122023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37432876

RESUMO

Pharmacotherapies for the treatment of major depressive disorder were serendipitously discovered almost seven decades ago. From this discovery, scientists pinpointed the monoaminergic system as the primary target associated with symptom alleviation. As a result, most antidepressants have been engineered to act on the monoaminergic system more selectively, primarily on serotonin, in an effort to increase treatment response and reduce unfavorable side effects. However, slow and inconsistent clinical responses continue to be observed with these available treatments. Recent findings point to the glutamatergic system as a target for rapid acting antidepressants. Investigating different cohorts of depressed individuals treated with serotonergic and other monoaminergic antidepressants, we found that the expression of a small nucleolar RNA, SNORD90, was elevated following treatment response. When we increased Snord90 levels in the mouse anterior cingulate cortex (ACC), a brain region regulating mood responses, we observed antidepressive-like behaviors. We identified neuregulin 3 (NRG3) as one of the targets of SNORD90, which we show is regulated through the accumulation of N6-methyladenosine modifications leading to YTHDF2-mediated RNA decay. We further demonstrate that a decrease in NRG3 expression resulted in increased glutamatergic release in the mouse ACC. These findings support a molecular link between monoaminergic antidepressant treatment and glutamatergic neurotransmission.


Assuntos
Transtorno Depressivo Maior , Animais , Camundongos , Afeto , Antidepressivos/farmacologia , Transtorno Depressivo Maior/tratamento farmacológico , Transdução de Sinais , Transmissão Sináptica
8.
Nat Commun ; 14(1): 2912, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37217515

RESUMO

Major depressive disorder (MDD) is a common, heterogenous, and potentially serious psychiatric illness. Diverse brain cell types have been implicated in MDD etiology. Significant sexual differences exist in MDD clinical presentation and outcome, and recent evidence suggests different molecular bases for male and female MDD. We evaluated over 160,000 nuclei from 71 female and male donors, leveraging new and pre-existing single-nucleus RNA-sequencing data from the dorsolateral prefrontal cortex. Cell type specific transcriptome-wide threshold-free MDD-associated gene expression patterns were similar between the sexes, but significant differentially expressed genes (DEGs) diverged. Among 7 broad cell types and 41 clusters evaluated, microglia and parvalbumin interneurons contributed the most DEGs in females, while deep layer excitatory neurons, astrocytes, and oligodendrocyte precursors were the major contributors in males. Further, the Mic1 cluster with 38% of female DEGs and the ExN10_L46 cluster with 53% of male DEGs, stood out in the meta-analysis of both sexes.


Assuntos
Transtorno Depressivo Maior , Transcriptoma , Masculino , Feminino , Humanos , Transcriptoma/genética , Transtorno Depressivo Maior/genética , Transtorno Depressivo Maior/metabolismo , Córtex Pré-Frontal/metabolismo , Depressão/genética , Encéfalo/metabolismo
9.
Front Psychiatry ; 14: 1075250, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36865068

RESUMO

Background: Cocaine use disorder (CUD) is characterized by a loss of control over cocaine intake and is associated with structural, functional, and molecular alterations in the human brain. At the molecular level, epigenetic alterations are hypothesized to contribute to the higher-level functional and structural brain changes observed in CUD. Most evidence of cocaine-associated epigenetic changes comes from animal studies while only a few studies have been performed using human tissue. Methods: We investigated epigenome-wide DNA methylation (DNAm) signatures of CUD in human post-mortem brain tissue of Brodmann area 9 (BA9). A total of N = 42 BA9 brain samples were obtained from N = 21 individuals with CUD and N = 21 individuals without a CUD diagnosis. We performed an epigenome-wide association study (EWAS) and analyzed CUD-associated differentially methylated regions (DMRs). To assess the functional role of CUD-associated differential methylation, we performed Gene Ontology (GO) enrichment analyses and characterized co-methylation networks using a weighted correlation network analysis. We further investigated epigenetic age in CUD using epigenetic clocks for the assessment of biological age. Results: While no cytosine-phosphate-guanine (CpG) site was associated with CUD at epigenome-wide significance in BA9, we detected a total of 20 CUD-associated DMRs. After annotation of DMRs to genes, we identified Neuropeptide FF Receptor 2 (NPFFR2) and Kalirin RhoGEF Kinase (KALRN) for which a previous role in the behavioral response to cocaine in rodents is known. Three of the four identified CUD-associated co-methylation modules were functionally related to neurotransmission and neuroplasticity. Protein-protein interaction (PPI) networks derived from module hub genes revealed several addiction-related genes as highly connected nodes such as Calcium Voltage-Gated Channel Subunit Alpha1 C (CACNA1C), Nuclear Receptor Subfamily 3 Group C Member 1 (NR3C1), and Jun Proto-Oncogene, AP-1 Transcription Factor Subunit (JUN). In BA9, we observed a trend toward epigenetic age acceleration (EAA) in individuals with CUD remaining stable even after adjustment for covariates. Conclusion: Results from our study highlight that CUD is associated with epigenome-wide differences in DNAm levels in BA9 particularly related to synaptic signaling and neuroplasticity. This supports findings from previous studies that report on the strong impact of cocaine on neurocircuits in the human prefrontal cortex (PFC). Further studies are needed to follow up on the role of epigenetic alterations in CUD focusing on the integration of epigenetic signatures with transcriptomic and proteomic data.

10.
Acta Neuropathol ; 145(4): 439-459, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36729133

RESUMO

Identification and characterisation of novel targets for treatment is a priority in the field of psychiatry. FKBP5 is a gene with decades of evidence suggesting its pathogenic role in a subset of psychiatric patients, with potential to be leveraged as a therapeutic target for these individuals. While it is widely reported that FKBP5/FKBP51 mRNA/protein (FKBP5/1) expression is impacted by psychiatric disease state, risk genotype and age, it is not known in which cell types and sub-anatomical areas of the human brain this occurs. This knowledge is critical to propel FKBP5/1-targeted treatment development. Here, we performed an extensive, large-scale postmortem study (n = 1024) of FKBP5/1, examining neocortical areas (BA9, BA11 and ventral BA24/BA24a) derived from subjects that lived with schizophrenia, major depression or bipolar disorder. With an extensive battery of RNA (bulk RNA sequencing, single-nucleus RNA sequencing, microarray, qPCR, RNAscope) and protein (immunoblot, immunohistochemistry) analysis approaches, we thoroughly investigated the effects of disease state, ageing and genotype on cortical FKBP5/1 expression including in a cell type-specific manner. We identified consistently heightened FKBP5/1 levels in psychopathology and with age, but not genotype, with these effects strongest in schizophrenia. Using single-nucleus RNA sequencing (snRNAseq; BA9 and BA11) and targeted histology (BA9, BA24a), we established that these disease and ageing effects on FKBP5/1 expression were most pronounced in excitatory superficial layer neurons of the neocortex, and this effect appeared to be consistent in both the granular and agranular areas examined. We then found that this increase in FKBP5 levels may impact on synaptic plasticity, as FKBP5 gex levels strongly and inversely correlated with dendritic mushroom spine density and brain-derived neurotrophic factor (BDNF) levels in superficial layer neurons in BA11. These findings pinpoint a novel cellular and molecular mechanism that has potential to open a new avenue of FKBP51 drug development to treat cognitive symptoms in psychiatric disorders.


Assuntos
Transtornos Mentais , Neocórtex , Humanos , Transtornos Mentais/genética , Envelhecimento/genética , Neurônios , Genótipo , Polimorfismo de Nucleotídeo Único
11.
J Neurochem ; 164(1): 44-56, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36196762

RESUMO

Our knowledge surrounding the overall fatty acid profile of the adult human brain has been largely limited to extrapolations from brain regions in which the distribution of fatty acids varies. This is especially problematic when modeling brain fatty acid metabolism, therefore, an updated estimate of whole-brain fatty acid concentration is necessitated. Here, we sought to conduct a comprehensive quantitative analysis of fatty acids from entire well-characterized human brain hemispheres (n = 6) provided by the Douglas-Bell Canada Brain Bank. Additionally, exploratory natural abundance carbon isotope ratio (CIR; δ13 C, 13 C/12 C) analysis was performed to assess the origin of brain fatty acids. Brain fatty acid methyl esters (FAMEs) were quantified by gas chromatography (GC)-flame ionization detection and minor n-6 and n-3 polyunsaturated fatty acid pentafluorobenzyl esters by GC-mass spectrometry. Carbon isotope ratio values of identifiable FAMEs were measured by GC-combustion-isotope ratio mass spectrometry. Overall, the most abundant fatty acid in the human brain was oleic acid, followed by stearic acid (STA), palmitic acid (PAM), docosahexaenoic acid (DHA), and arachidonic acid (ARA). Interestingly, cholesterol as well as saturates including PAM and STA were most enriched in 13 C, while PUFAs including DHA and ARA were most depleted in 13 C. These findings suggest a contribution of endogenous synthesis utilizing dietary sugar substrates rich in 13 C, and a combination of marine, animal, and terrestrial PUFA sources more depleted in 13 C, respectively. These results provide novel insights on cerebral fatty acid origin and concentration, the latter serving as a valuable resource for future modeling of fatty acid metabolism in the human brain.


Assuntos
Ácidos Graxos Ômega-3 , Ácidos Graxos , Adulto , Animais , Humanos , Ácidos Graxos/metabolismo , Isótopos de Carbono/análise , Ácidos Docosa-Hexaenoicos/metabolismo , Encéfalo/metabolismo
13.
Transl Psychiatry ; 12(1): 507, 2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36481769

RESUMO

Early-life stress (ELS) leads to increased vulnerability to psychiatric disorders including depression later in life. Neuroinflammatory processes have been implicated in ELS-induced negative health outcomes, but how ELS impacts microglia, the main tissue-resident macrophages of the central nervous system, is unknown. Here, we determined the effects of ELS-induced by limited bedding and nesting material during the first week of life (postnatal days [P]2-9) on microglial (i) morphology; (ii) hippocampal gene expression; and (iii) synaptosome phagocytic capacity in male pups (P9) and adult (P200) mice. The hippocampus of ELS-exposed adult mice displayed altered proportions of morphological subtypes of microglia, as well as microglial transcriptomic changes related to the tumor necrosis factor response and protein ubiquitination. ELS exposure leads to distinct gene expression profiles during microglial development from P9 to P200 and in response to an LPS challenge at P200. Functionally, synaptosomes from ELS-exposed mice were phagocytosed less by age-matched microglia. At P200, but not P9, ELS microglia showed reduced synaptosome phagocytic capacity when compared to control microglia. Lastly, we confirmed the ELS-induced increased expression of the phagocytosis-related gene GAS6 that we observed in mice, in the dentate gyrus of individuals with a history of child abuse using in situ hybridization. These findings reveal persistent effects of ELS on microglial function and suggest that altered microglial phagocytic capacity is a key contributor to ELS-induced phenotypes.


Assuntos
Experiências Adversas da Infância , Maus-Tratos Infantis , Microglia , Animais , Criança , Masculino , Camundongos , Transcriptoma , Humanos , Microglia/patologia , Fagocitose , Sinaptossomos , Hipocampo/fisiopatologia , Giro Denteado/fisiopatologia
14.
Proc Natl Acad Sci U S A ; 119(33): e2123146119, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35947618

RESUMO

Human prefrontal cortex (hPFC) is a complex brain region involved in cognitive and emotional processes and several psychiatric disorders. Here, we present an overview of the distribution of the peptidergic systems in 17 subregions of hPFC and three reference cortices obtained by microdissection and based on RNA sequencing and RNAscope methods integrated with published single-cell transcriptomics data. We detected expression of 60 neuropeptides and 60 neuropeptide receptors in at least one of the hPFC subregions. The results reveal that the peptidergic landscape in PFC consists of closely located and functionally different subregions with unique peptide/transmitter-related profiles. Neuropeptide-rich PFC subregions were identified, encompassing regions from anterior cingulate cortex/orbitofrontal gyrus. Furthermore, marked differences in gene expression exist between different PFC regions (>5-fold; cocaine and amphetamine-regulated transcript peptide) as well as between PFC regions and reference regions, for example, for somatostatin and several receptors. We suggest that the present approach allows definition of, still hypothetical, microcircuits exemplified by glutamatergic neurons expressing a peptide cotransmitter either as an agonist (hypocretin/orexin) or antagonist (galanin). Specific neuropeptide receptors have been identified as possible targets for neuronal afferents and, interestingly, peripheral blood-borne peptide hormones (leptin, adiponectin, gastric inhibitory peptide, glucagon-like peptides, and peptide YY). Together with other recent publications, our results support the view that neuropeptide systems may play an important role in hPFC and underpin the concept that neuropeptide signaling helps stabilize circuit connectivity and fine-tune/modulate PFC functions executed during health and disease.


Assuntos
Neuropeptídeos , Córtex Pré-Frontal , Receptores de Neuropeptídeos , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Córtex Pré-Frontal/metabolismo , Receptores de Neuropeptídeos/genética , Receptores de Neuropeptídeos/metabolismo
15.
Drug Discov Today ; 27(9): 2562-2573, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35798226

RESUMO

To understand how various brain cell types communicate with each other to orchestrate functional processes, it is crucial to comprehend the signals used to relay such information. Therefore, an important challenge to studying complex brain diseases is to interrogate relevant interactions between cell types. The microglia-oligodendroglia interaction is an important example that has fundamental roles in physiological state and brain pathologies. Here, we review the latest findings on microglia-oligodendroglia interplay in physiological and pathological conditions. Furthermore, we provide an in silico ligand-receptor interaction analysis to explore potential druggable targets in multiple sclerosis (MS) and major depressive disorder (MDD).


Assuntos
Transtorno Depressivo Maior , Esclerose Múltipla , Encéfalo , Humanos , Microglia , Oligodendroglia
16.
Front Psychiatry ; 13: 871997, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35782423

RESUMO

Increasing evidence supports the notion that neuroinflammation plays a critical role in the etiology of major depressive disorder (MDD), at least in a subset of patients. By virtue of their capacity to transform into reactive states in response to inflammatory insults, microglia, the brain's resident immune cells, play a pivotal role in the induction of neuroinflammation. Experimental studies have demonstrated the ability of microglia to recognize pathogens or damaged cells, leading to the activation of a cytotoxic response that exacerbates damage to brain cells. However, microglia display a wide range of responses to injury and may also promote resolution stages of inflammation and tissue regeneration. MDD has been associated with chronic priming of microglia. Recent studies suggest that altered microglial morphology and function, caused either by intense inflammatory activation or by senescence, may contribute to depression and associated impairments in neuroplasticity. In this context, modifying microglia phenotype by tuning inflammatory pathways might have important translational relevance to harness neuroinflammation in MDD. Interestingly, it was recently shown that different microglial phenotypes are associated with distinct metabolic pathways and analysis of the underlying molecular mechanisms points to an instrumental role for energy metabolism in shaping microglial functions. Here, we review various canonical pro-inflammatory, anti-inflammatory and metabolic pathways in microglia that may provide new therapeutic opportunities to control neuroinflammation in brain disorders, with a strong focus on MDD.

17.
Epigenomics ; 14(11): 651-670, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35588246

RESUMO

Aims: To evaluate H3K9 acetylation and gene expression profiles in three brain regions of Alzheimer's disease (AD) patients and elderly controls, and to identify AD region-specific abnormalities. Methods: Brain samples of auditory cortex, hippocampus and cerebellum from AD patients and controls underwent chromatin immunoprecipitation sequencing, RNA sequencing and network analyses. Results: We found a hyperacetylation of AD cerebellum and a slight hypoacetylation of AD hippocampus. The transcriptome revealed differentially expressed genes in the hippocampus and auditory cortex. Network analysis revealed Rho GTPase-mediated mechanisms. Conclusions: These findings suggest that some crucial mechanisms, such as Rho GTPase activity and cytoskeletal organization, are differentially dysregulated in brain regions of AD patients at the epigenetic and transcriptomic levels, and might contribute toward future research on AD pathogenesis.


Alzheimer's disease (AD) is the most common form of dementia affecting the elderly population. The onset and progression of AD are influenced by environmental factors, which are able to promote epigenetic changes on the DNA and/or the DNA-associated proteins called histones. We investigated a specific epigenetic modification of histones (H3K9 acetylation) in three brain regions of AD patients and compared them with elderly controls. We found increased levels of H3K9 acetylation in the cerebellum of AD patients, as well as a slight decrease of this modification in the hippocampus of the same patients. These brain tissues from AD patients showed abnormal gene expression patterns when compared with elderly controls. These findings contribute to understanding the molecular changes that occur in AD, and provide a basis for future research or drug development for AD treatment.


Assuntos
Doença de Alzheimer , Acetilação , Idoso , Doença de Alzheimer/patologia , Encéfalo/metabolismo , Humanos , Transcriptoma , Proteínas rho de Ligação ao GTP/genética
18.
Acta Neuropathol Commun ; 10(1): 36, 2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35296366

RESUMO

The cellular alterations of the hippocampus lead to memory decline, a shared symptom between Alzheimer's disease (AD) and dementia with Lewy Bodies (DLB) patients. However, the subregional deterioration pattern of the hippocampus differs between AD and DLB with the CA1 subfield being more severely affected in AD. The activation of microglia, the brain immune cells, could play a role in its selective volume loss. How subregional microglia populations vary within AD or DLB and across these conditions remains poorly understood. Furthermore, how the nature of the hippocampal local pathological imprint is associated with microglia responses needs to be elucidated. To this purpose, we employed an automated pipeline for analysis of 3D confocal microscopy images to assess CA1, CA3 and DG/CA4 subfields microglia responses in post-mortem hippocampal samples from late-onset AD (n = 10), DLB (n = 8) and age-matched control (CTL) (n = 11) individuals. In parallel, we performed volumetric analyses of hyperphosphorylated tau (pTau), amyloid-ß (Aß) and phosphorylated α-synuclein (pSyn) loads. For each of the 32,447 extracted microglia, 16 morphological features were measured to classify them into seven distinct morphological clusters. Our results show similar alterations of microglial morphological features and clusters in AD and DLB, but with more prominent changes in AD. We identified two distinct microglia clusters enriched in disease conditions and particularly increased in CA1 and DG/CA4 of AD and CA3 of DLB. Our study confirms frequent concomitance of pTau, Aß and pSyn loads across AD and DLB but reveals a specific subregional pattern for each type of pathology, along with a generally increased severity in AD. Furthermore, pTau and pSyn loads were highly correlated across subregions and conditions. We uncovered tight associations between microglial changes and the subfield pathological imprint. Our findings suggest that combinations and severity of subregional pTau, Aß and pSyn pathologies transform local microglia phenotypic composition in the hippocampus. The high burdens of pTau and pSyn associated with increased microglial alterations could be a factor in CA1 vulnerability in AD.


Assuntos
Doença de Alzheimer , Doença por Corpos de Lewy , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Hipocampo/patologia , Humanos , Doença por Corpos de Lewy/patologia , Microglia/patologia , Fenótipo , alfa-Sinucleína/metabolismo , Proteínas tau/metabolismo
19.
Nat Commun ; 13(1): 164, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013188

RESUMO

Prevalence, symptoms, and treatment of depression suggest that major depressive disorders (MDD) present sex differences. Social stress-induced neurovascular pathology is associated with depressive symptoms in male mice; however, this association is unclear in females. Here, we report that chronic social and subchronic variable stress promotes blood-brain barrier (BBB) alterations in mood-related brain regions of female mice. Targeted disruption of the BBB in the female prefrontal cortex (PFC) induces anxiety- and depression-like behaviours. By comparing the endothelium cell-specific transcriptomic profiling of the mouse male and female PFC, we identify several pathways and genes involved in maladaptive stress responses and resilience to stress. Furthermore, we confirm that the BBB in the PFC of stressed female mice is leaky. Then, we identify circulating vascular biomarkers of chronic stress, such as soluble E-selectin. Similar changes in circulating soluble E-selectin, BBB gene expression and morphology can be found in blood serum and postmortem brain samples from women diagnosed with MDD. Altogether, we propose that BBB dysfunction plays an important role in modulating stress responses in female mice and possibly MDD.


Assuntos
Ansiedade/metabolismo , Barreira Hematoencefálica/metabolismo , Depressão/metabolismo , Transtorno Depressivo Maior/metabolismo , Selectina E/genética , Estresse Psicológico/metabolismo , Transcriptoma , Animais , Ansiedade/genética , Ansiedade/patologia , Transporte Biológico , Biomarcadores/metabolismo , Barreira Hematoencefálica/patologia , Depressão/genética , Depressão/patologia , Transtorno Depressivo Maior/genética , Transtorno Depressivo Maior/patologia , Selectina E/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Camundongos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Núcleo Accumbens/irrigação sanguínea , Núcleo Accumbens/metabolismo , Núcleo Accumbens/patologia , Córtex Pré-Frontal/irrigação sanguínea , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/patologia , Caracteres Sexuais , Estresse Psicológico/genética , Estresse Psicológico/patologia
20.
Mol Psychiatry ; 27(3): 1552-1561, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34799691

RESUMO

Child abuse (CA) is a strong predictor of psychopathologies and suicide, altering normal trajectories of brain development in areas closely linked to emotional responses such as the prefrontal cortex (PFC). Yet, the cellular underpinnings of these enduring effects are unclear. Childhood and adolescence are marked by the protracted formation of perineuronal nets (PNNs), which orchestrate the closure of developmental windows of cortical plasticity by regulating the functional integration of parvalbumin interneurons into neuronal circuits. Using well-characterized post-mortem brain samples, we show that a history of CA is specifically associated with increased densities and morphological complexity of WFL-labeled PNNs in the ventromedial PFC (BA11/12), possibly suggesting increased recruitment and maturation of PNNs. Through single-nucleus sequencing and fluorescent in situ hybridization, we found that the expression of canonical components of PNNs is enriched in oligodendrocyte progenitor cells (OPCs), and that they are upregulated in CA victims. These correlational findings suggest that early-life adversity may lead to persistent patterns of maladaptive behaviors by reducing the neuroplasticity of cortical circuits through the enhancement of developmental OPC-mediated PNN formation.


Assuntos
Maus-Tratos Infantis , Células Precursoras de Oligodendrócitos , Criança , Matriz Extracelular/metabolismo , Humanos , Hibridização in Situ Fluorescente , Interneurônios/metabolismo , Células Precursoras de Oligodendrócitos/metabolismo , Parvalbuminas/metabolismo , Córtex Pré-Frontal/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...